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Abstract.  Kinetic linear dispersion theory for electromagnetic fluctua-
tions in a homogeneous collisionless plasma is used to study the properties

of a proton Bernstein mode instability driven by a proton velocity distribu-
tion f,(v) such that df,(v,.)/0v, > 0 at suprathermal values of v, where

|| and L denote directions parallel and perpendicular to the background mag-
netic field B,, respectively. The model uses a three-component proton ve-
locity distribution with f,(v) = fi(v) + fa(v),vi) — fs(v), vL) where fi(v)
represents a Maxwellian thermal component. Here f, and f3; are bi-Maxwellians
with T, > T, and slightly different densities and temperatures to repre-

sent a suprathermal velocity ring component consistent with nonthermal pro-
ton perpendicular velocity distributions observed in the magnetospheric ring
current. As is well established, the growth rate of the resulting instability

has relative maxima at harmonics of the proton cyclotron frequency, the wavevec-
tor k satisfies 0 < & << k. and wavelengths are of the order of or
smaller than the proton gyroradius. The instability growth rate decreases

as the electron/thermal-proton temperature ratio increases and, for the di-
mensionless parameters chosen here, has a maximum value for the thermal

proton [ of about 10%.
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1. Introduction

Enhanced magnetic and electric field fluctuations at frequencies between the proton
cyclotron frequency and the lower hybrid frequency and at propagation nearly perpen-
dicular to B, are observed frequently near the equatorial plane of the terrestrial magne-
tosphere. Such enhanced fluctuations were first called “equatorial noise” [Russell et al.,
1970; Santolik et al., 2002, 2004], but more recently have been termed “magnetosonic
waves” [Perraut et al., 1982; Pokhotelov et al., 2008]. Horne et al. [2007] suggested
that these enhanced fluctuations may accelerate electrons from tens of keV up to a few
MeV in the outer radiation belt. This has stimulated substantial recent interest in these
fluctuations [Meredith et al., 2008, 2009; Tao et al., 2009; Shprits, 2009; Ni and Sum-
mers, 2010; Bortnik and Thorne, 2010]. Magnetospheric observations characterize the
unstable proton velocity distributions f,(v) associated with these “magnetosonic waves”
as having a velocity-ring type property or, more generally, with 0f,(v,)/0v, > 0 where
1 denotes directions perpendicular to the background magnetic field B, [Perraut et al.,
1982; Boardsen et al., 1992; Meredith et al., 2008; Borovsky and Denton, 2009; Denton et
al., 2010]. Such unstable proton velocity distributions have also been obtained from the
RAM magnetospheric model [Jordanova et al., 1997]. Chen et al. [2010] used the RAM
model to show that, as a result of injection during magnetic storms, proton velocity dis-
tributions f,(v) near midnight are essentially bi-Maxwellian with 7', /T > 1, where the
subscripts indicate directions relative to the background magnetic field B,. But between
prenoon and duskside, energy-dependent ion convection leads to a velocity-ring distribu-

tions with the property 0f,(v,)/0v, > 0 at suprathermal perpendicular velocities. Chen
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et al. [2011] analyzed energetic proton measurements from geosynchronous orbit during
the April 2001 magnetic storm to show that proton velocity rings can form over a broad
spatial region from noon to pre-midnight. Furthermore, these authors used the approxi-
mate linear theory of Chen et al. [2010] and the observed proton velocity distributions to
calculate convective growth rates of the resulting instability.

If the positive slope of f,(v,) is sufficiently steep, kinetic linear dispersion theory in
a relatively homogeneous, collisionless, magnetized plasma predicts that electromagnetic
proton Bernstein modes at 0 < k| << k, become unstable at harmonics of the proton
cyclotron frequency. Perraut et al. [1982] considered a cold plasma with a cold proton
velocity ring to show that, at k = 0, a proton-driven instability would be excited near
crossings between the magnetosonic/whistler wave and the various Bernstein mode har-
monics. In this cold plasma approximation, the two critical parameters are the relative
density of the ring and the relative ring speed. The growth rate becomes stronger for
increasing ion ring densities, and, for the relatively weak ring components typical to the
magnetosphere, the instability is excited only when the perpendicular ring speed is larger
than the Alfvén speed. Further studies considered thermal electron and ion components
[Boardsen et al., 1992; McClements and Dendy, 1993; Horne et al., 2000]; for exam-
ple, McClements et al. [1994] showed that thermal effects allow the cyclotron harmonic
instability to grow at propagation angles out to at least 10° from directions strictly per-
pendicular to B,. Akimoto et al. [1985] showed that the growth rate is quite sensitive to
the electron temperature and decreases with increasing 7. /7).

Some particle-in-cell simulations have addressed the nonlinear consequences of this in-

stability in the electrostatic limit [e.g., Lee and Birdsall, 1979; Roth and Hudson, 1985;
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Janhunen et al., 2003; Ashour-Abdalla et al., 2006]. But few simulations have addressed
the fully electromagnetic properties of this instability [Lee and Birdsall, 1979] in the non-
zero-3 regime appropriate for the terrestrial magnetosphere. Recently Liu et al. [2011]
have carried out fully electromagnetic particle-in-cell simulations of the proton Berstein
instability. The simulation results agree well with a kinetic linear dispersion analysis and
demonstrate that proton scattering by the enhanced fluctuations is a prime cause for the
reduction of the 0f,(v,)/0v, > 0 and the consequent saturation of instability growth.
Here we solve the full kinetic linear dispersion equation for the proton Bernstein insta-
bility driven by 0f,(v,)/0v, > 0 at suprathermal speeds in a homogeneous, collisionless,
magnetized plasma. We derive scaling relations for the growth rate of this instability as
a function of the thermal proton  and the electron/thermal-proton temperature ratio.
The term “magnetosonic waves” has been incorrectly applied to fluctuations observed
in the magnetosphere. In magnetohydrodynamic (MHD) theory, magnetosonic waves cor-
respond to the normal mode which, at propagation oblique to the background magnetic
field, is compressive and has a phase speed faster than the incompressible Alfven mode.
Because MHD theory is limited to frequencies much below the proton cyclotron frequency,
magnetosonic waves have historically been associated with such very low frequencies. Un-
fortunately, many observers have applied the “magnetosonic” label to their measurements
of compressional modes above the proton cyclotron frequency. We will bow to precedent
and use this incorrect term in referring to magnetospheric observations. But we insist on
using the more appropriate term “proton Bernstein mode instability” (omitting “mode”
for the sake of brevity) in describing linear theory calculations of the growing fluctuations

studied here.
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We denote the jth species plasma frequency as w; = y/4mn,e?/m;, the jth species
cyclotron frequency as Q; = e;B,/mjc, the jth component thermal speed as v; =
\/m, and f3; = 8mn.kpT;/B2. The Alfvén speed is vy = B,/v/dmn,m;. Here
n, is the total plasma density, B, denotes the uniform background magnetic field, and we
consider a two-species plasma of electrons (subscript e€) and protons (subscript p). The
complex frequency w = w, + ¢y where v > 0 indicates a growing fluctuation. We define

the magnetic compressibility as

_ 9By[?
= |5BH|2 (1)

[Gary et al., 2010] and the electric/magnetic field energy ratio as

SE|?

[Gary, 1993, Eq. (5.2.5)].

Although the subscript L generally indicates a direction perpendicular to B,, we warn
the reader that it is applied in two different contexts here. We use v, in the usual sense,
that is, to denote the magnitude of the perpendicular velocity in cylindrical coordinates.
However, for vector quantities associated with spatial variations, including k, 6B, and /E,
we use L to denote one of the two perpendicular coordinates. The Cartesian coordinate
system of our linear dispersion theory [Gary, 1993] admits spatial variations in both the
direction parallel to B, (denoted by ||) and one direction perpendicular to the background
field (denoted by L), but no spatial variations in the other perpendicular direction (de-
noted by L.1). So the real wavevector is defined as k = 2k, + yk, = zkcos + yksinf

where 0 denotes the wavevector direction relative to B,.
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2. Linear Theory

This section describes our numerical solutions for the properties of the proton Bernstein
instability driven by 0f,(v.)/0v, > 0 at suprathermal perpendicular speeds using the
linear dispersion equation for electromagnetic fluctuations in a homogeneous, magnetized,
collisionless plasma. Under the assumption that the plasma species velocity distributions
can be represented as the sum of several Maxwellians or bi-Maxwellians, the analytic
form for this dispersion equation is given, for example, by Stiz [1992] and Gary [1993].
In contrast to several of the approximate linear theory analyses cited above, we here, as
Denton et al. [2010] and Gary et al. [2010], numerically solve the full dispersion equation
for thermal proton and electron velocity distributions for arbitrary angles of propagation
relative to B,.

Denton et al. [2010] and Gary et al. [2010] examined linear theory solutions for proton
velocity distributions as observed in the plasma sheet boundary layer. Such distributions
have positive slopes in v at speeds relatively small compared to the overall proton thermal
speed, and may be represented as the difference of two Maxwellians. In contrast here our
concern is instability growth in the magnetospheric ring current, where both observations
[Perraut et al., 1982; Boardsen et al., 1992; Meredith et al., 2008; Borovsky and Denton,
2009; Chen et al., 2011] and ring current models [Chen et al., 2010] show that stormtime
proton velocity distributions may consist of a relatively cool, relatively dense, relatively
isotropic thermal component and a relatively hot, relatively tenuous, velocity-ring-like
part. In this case the regime of 0f,(v,)/0v, > 0 arises at v, values greater than the

average speed of the thermal component. To represent such a case, we here consider
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proton velocity distributions constructed from three components in the form

fo(v) = fi(v) + folvy,vn) = fa(v),v1)

where each component is a bi-Maxwellian with

n. T .
filvg,v1) = @T;)?’/?T—Ej exp(—vj/2v}) exp(—viT);/2viT ;)
7 j

Here f; is the thermal proton component represented by an isotropic Maxwellian distri-
bution with 7]; = T';. Thus, using the definitions of Section 1, v}/v% = /2. The two
other components are hotter and anisotropic with 7';;/7j; > 1 so that their difference
represents a velocity-ring-like distribution with positive slope in the perpendicular veloc-
ity distribution. We call this the “three-component” proton model. Note that because we
do not include a dense, cold ion component, this model is less appropriate to represent
proton distributions in the plasmasphere, but is more relevant for protons in the outer
magnetosphere [Perraut et al., 1982; Meredith et al., 2008]. We define n, = ny + ny — ns
and n,T, = nT) + nyTy — n3Ts. The electrons are described by a single Maxwellian
velocity distribution.

The ring current observations and models cited above demonstrate a broad range of
parameters for unstable proton velocity ring distributions. The numerical algorithm of
our dispersion solver uses an increasing number of Bessel functions to compute dispersion
at increasing values of w,/€2,, so numerical convergence is improved by choosing plasma
parameters which yield maximum growth at frequencies somewhat, but not substantially,
greater than ,. Thus we choose the following representative parameters: v,/c = 1.0 X
1073, 3 = 0.20, n1/ne = 0.650, na/n, = 3.300, ng/n, = 2.95, Tjp/Ty = 2, Tj;3/T1 = 1.4,

Te/TI = 001, and TL?/T'HQ == TLg/T’”g = 2.0 so that T’”p/Tl = 3.12.
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Figure 1 illustrates the proton velocity distribution corresponding to these parame-
ters. Here 0f,(v),0)/0vy < 0 for all v > 0, whereas 0f,(0,v,)/0v, > 0 for a range of
suprathermal perpendicular speeds, indicating the potential for a proton-driven instabil-
ity. The two-dimensional color representation in Figure 1c shows that, in this model and
for these parameters, f,(v) at v # 0 is rather different from the velocity-ring distributions
modeled, for example, by Chen et al. [2010]. However, because the instability propagates
at ki, >> k, it is the properties of f,(0,v,) which are the primary driver of the growing
mode, so that we believe our 3-component model of the proton distribution provides a
qualitative, if not quantitative, representation of the properties of this instability.

The dispersion properties of the n = 1 mode of the proton Bernstein instability in the
three-component proton model are very similar to those of the two-Maxwellian model
illustrated in Fig. 2 and Fig. 3 of Gary et al. [2010] and are not shown here. As is
well established, the instability propagates almost, but not exactly, perpendicular to the
background magnetic field (0 < &k << k) and near successive harmonics of the proton
cyclotron frequency.

Figure 2a displays the wavenumber dependence of v for the unstable regimes of the first
eight unstable Bernstein modes. The angles of propagation correspond to the relative
maximum growth rates of the individual harmonics and are as stated in the caption; the
frequencies corresponding to the successive growth rate peaks are illustrated in Figure 2c.
The perpendicular phase speeds of each unstable cyclotron mode are shown in Figure 2b
with the dots representing the phase speed at maximum growth for that mode. For the
Bl = 0.20 used here, vy /vy4 = v/0.10, so that the perpendicular phase speed at maximum

growth of w,/kjva ~ 0.74 is equivalent to w,/k;v; ~ 2.34. Thus from Figure 1b, the
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steep positive slope of the proton perpendicular velocity distribution corresponds to the
perpendicular phase speed at maximum growth.

Figure 3 illustrates some linear properties at the relative maximum growth rates of the
cyclotron harmonic modes of this instability at w, < 102, as functions of B, under the
condition that all other representative dimensionless parameters stated above are held
constant. At constant v4/c, increases in Bl correspond to increases in the temperature
of the core proton component. Figure 3a shows that the maximum growth rate of each
of these modes lies at 0.10 < Bl < 0.15. This is similar to the Gary et al. [2010] result
from the two-proton-component model which shows a maximum instability growth rate
near 3; ~ 0.30. Figure 3b shows the angles of propagation at maximum growth of these
harmonics; so increasing 3 leads to a monotonic decrease in 0 for each mode. Again, this
is the same trend as shown in Fig. 3c of Gary et al. [2010] with § decreasing monotonically
as 51 increases. Figure 3c shows that w,/k v, is also a monotonic function of 51, with
this dimensionless phase speed increasing as the core proton temperature increases. In
contrast to the Gary et al. [2010] results of w,/k va ~ 0.25, here w,/k;vs =~ 0.60 near
maximum growth rates.

Linear dispersion theory not only provides a relationship between the complex frequency
and the wavevector k for a particular normal mode of the plasma, it also yields dimen-
sionless ratios of quadratic combinations of the various fluctuating field components of
that normal mode [e.g., Chapter 5 of Gary, 1993]. For the proton Bernstein instability
and the range of parameters illustrated in Figure 3, magnetic fluctuations have both a

transverse and a compressive component, with [0B|* << [6B|* ~ |6B)|*> at maximum
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growth rate. The corresponding electric field fluctuations are predominantly electrostatic,
with [0E)|> << |0E L (|* << [0E .

For all values of the parameters considered here, 0.96 < |6E > < 1.0; we do not
illustrate this result. However, Figure 4 shows two other linear theory quantities which
display variations which appear to be characteristic of this instability. Figure 4a illustrates
the magnetic compressibility C)| [Equation (1)] which is a relatively insensitive function of
the cyclotron harmonic number, and, as in the two-component model results of Gary et al.
[2010], increases with increasing Bl. Figure 4b shows that, in our three-component proton
model, the electric/magnetic field energy ratio [Equation (2)] increases with increasing
mode frequency, but is a diminishing function of Bl; it also approximately satisfies opp ~
w? at w, >> Q.

Figure 5 shows the maximum growth rate and the corresponding electron Landau res-
onance factor of the w, ~ 62, cyclotron mode of the proton Bernstein instability as
functions of T,/Ty. The ~,,/€, is a decreasing function of the electron/thermal-proton
temperature ratio, due to the increasing efficacy of the electron Landau resonance, as
indicated by the decreasing magnitude of (.. This indicates that this instability is subject
to strong electron Landau damping as the relative electron temperature increases. On
the other hand, in the nonresonant limit, the growth rate becomes relatively independent,
of the electron temperature, suggesting that hybrid simulations, in which electrons are
represented as a fluid, may provide an appropriate representation of the nonlinear physics

of this instability as long as T,/T; £ 0.10.
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3. Conclusions

We have carried out numerical solutions of the full kinetic linear dispersion equation
for the proton Bernstein instability driven by a proton velocity distribution f,(v) such
that 0f,(v,)/0vy > 0 at suprathermal values of v;. We model the proton velocity
distribution by means of three components: a Maxwellian represents the relatively cool
thermal component, and the difference of two hotter bi-Maxwellians with 7', ;/T}; >
1 represents the velocity-ring-like distributions sometimes observed in in the stormtime
magnetosphere. Our results are consistent with previous theoretical results; the instability
propagates almost perpendicular to B, with relative maxima near successive harmonics of
the proton cyclotron frequency. The fluctuating electric fields are essentially electrostatic,
and the fluctuating magnetic fields have both compressive (6B)) and transverse (6B, )
components. The primary new results presented here are for scalings of the maximum
growth rate of the proton Bernstein instability driven by a suprathermal velocity ring
distribution. In our model the maximum growth rate is found in the range 0.10 < B <0.15
and at perpendicular phase speeds w,./k;va >~ 0.6. As 3 increases, the angle of instability
propagation moves away from the direction perpendicular to the background magnetic
field, and the magnetic compressibility increases. The maximum instability growth rate
is a monotonically decreasing function of the electron/thermal-proton temperature ratio.

The primary value of the results presented here are that they are exact; our calculations
represent full solutions of the kinetic linear theory dispersion equation, with no approxima-
tions concerning the magnitudes of the dimensionless frequencies, wavevectors or plasma
parameters. The primary limitations of this work are two. First, our calculations strictly

apply only to homogeneous plasmas and should include consequences of propagation in
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the inhomogeneous geomagnetic field to increase their magnetospheric relevance. Second,
although our model represents the positive slope of the f,(0,v,) which drives the proton
Bernstein instability, it does not fully represent the v # 0 properties of stormtime proton

velocity distributions predicted by the RAM model as in Chen et al. [2010].
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Figure 1. The proton velocity distribution in arbitrary units in the three-component model
using the representative plasma parameters stated in Section 2. (a) The parallel velocity distribu-
tion f,(v,0), (b) the perpendicular velocity distribution f,(0,v), and (c) the two-dimensional
distribution f, (v, v.).

Figure 2. Linear theory properties of the first eight cyclotron modes of the proton Bernstein
instability for the representative parameters stated in Section 2. (a) Growth rates of the modes
as functions of the wavenumber. (b) Perpendicular phase speed (w,/k v4) of the modes as
functions of the wavenumber. The dots on each curve here correspond to the wavenumber of
maximum growth for each cyclotron mode. (c) Growth rates of the modes as functions of the
real frequency. Here each curve is plotted for a fixed value of # corresponding to the maximum
growth rate of that cyclotron mode. These angles of propagation are, starting with the w, ~ 3,
mode, # = 81.40°, 83.25°, 84.45°, 85.30°, 85.90°, 86.35°, 86.75°, and 87.00°.

Figure 3. Linear theory properties of the first eight cyclotron modes of the proton Bernstein
instability as functions of the real frequency w,. Here each symbol corresponds to a maximum
growth rate of the individual cylotron harmonic modes illustrated in Figure 2 at six different
values of 3; as labeled in panel (a); all other parameters have the representative values stated in
Section 2. (a) Maximum growth rate, (b) propagation angle at maximum growth rate, and (c)
dimensionless perpendicular phase speed w,/k;v4.

Figure 4. Linear theory properties of the first eight cyclotron modes of the proton Bernstein
instability as functions of the real frequency w,. Here each symbol corresponds to a maximum
growth rate of the individual cylotron harmonic modes illustrated in Figure 2 at six different
values of Bl as labeled in panel (a); all other parameters have the representative values stated in

Section 2. (a) Magnetic compressibility C} and (b) the electric/magnetic field energy ratio ogp.
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Figure 5. The maximum growth rate (solid line) and corresponding electron Landau resonance
factor (, = wr/ﬂk||ve (dashed line) of the w, ~ 62, cyclotron mode of the proton Bernstein
instability as functions of T,/T;. All other parameters have the representative values stated in
Section 2. The wave parameters corresponding to this maximum growth are kv, /€, ~ 2.57,

 ~ 85.4°, and w, /€, ~ 5.95 and are relatively independent of T, /T} here.
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